- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Abatzoglou, John T. (1)
-
Hegewisch, Katherine C. (1)
-
Huntington, Justin (1)
-
Huntington, Justin L. (1)
-
Jencso, Kelsey (1)
-
Jones, Matthew O. (1)
-
Ketchum, David (1)
-
Maneta, Marco P. (1)
-
McEvoy, Daniel J. (1)
-
Melton, Forrest (1)
-
Nauslar, Nicholas J. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The increasing complexity and impacts of fire seasons in the United States have prompted efforts to improve early warning systems for wildland fire management. Outlooks of potential fire activity at lead‐times of several weeks can help in wildland fire resource allocation as well as complement short‐term meteorological forecasts for ongoing fire events. Here, we describe an experimental system for developing downscaled ensemble‐based subseasonal forecasts for the contiguous US using NCEP's operational Climate Forecast System version 2 model. These forecasts are used to calculate forecasted fire danger indices from the United States (US) National Fire Danger Rating System in addition to forecasts of evaporative demand. We further illustrate the skill of subseasonal forecasts on weekly timescales using hindcasts from 2011 to 2021. Results show that while forecast skill degrades with time, statistically significant week 3 correlative skill was found for 76% and 30% of the contiguous US for Energy Release Component and evaporative demand, respectively. These results highlight the potential value of experimental subseasonal forecasts in complementing existing information streams in weekly‐to‐monthly fire business decision making for suppression‐based decisions and geographic reallocation of resources during the fire season, as well for proactive fire management actions outside of the core fire season.more » « less
-
Ketchum, David; Jencso, Kelsey; Maneta, Marco P.; Melton, Forrest; Jones, Matthew O.; Huntington, Justin (, Remote Sensing)High frequency and spatially explicit irrigated land maps are important for understanding the patterns and impacts of consumptive water use by agriculture. We built annual, 30 m resolution irrigation maps using Google Earth Engine for the years 1986–2018 for 11 western states within the conterminous U.S. Our map classifies lands into four classes: irrigated agriculture, dryland agriculture, uncultivated land, and wetlands. We built an extensive geospatial database of land cover from each class, including over 50,000 human-verified irrigated fields, 38,000 dryland fields, and over 500,000 km 2 of uncultivated lands. We used 60,000 point samples from 28 years to extract Landsat satellite imagery, as well as climate, meteorology, and terrain data to train a Random Forest classifier. Using a spatially independent validation dataset of 40,000 points, we found our classifier has an overall binary classification (irrigated vs. unirrigated) accuracy of 97.8%, and a four-class overall accuracy of 90.8%. We compared our results to Census of Agriculture irrigation estimates over the seven years of available data and found good overall agreement between the 2832 county-level estimates (r 2 = 0.90), and high agreement when estimates are aggregated to the state level (r 2 = 0.94). We analyzed trends over the 33-year study period, finding an increase of 15% (15,000 km 2 ) in irrigated area in our study region. We found notable decreases in irrigated area in developing urban areas and in the southern Central Valley of California and increases in the plains of eastern Colorado, the Columbia River Basin, the Snake River Plain, and northern California.more » « less
An official website of the United States government
